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The motion of a suspension of solid magnet ized el l ipsoids of rotation in a uniform magnetic 
field is cons idered .  The el l ipsoids  a r e  a s sumed  to be magnet ized along the axes  of s y m m e t r y .  
Relaxat ion p r o c e s s e s  in the solid phase  a re  not considered.  The s t r e s s  t ensor  of the suspen-  
sion is ca lcula ted  taking into account the rotat ional  Brownian motion of the pa r t i c l e s .  It is 
shown that  the v i scos i ty  t enso r  contains six independent kinetic coeff ic ients ,  which a re  even 
with r e spec t  to the magnetic field. The re la t ion between these  coeff ic ients  and the field and 
the ra t io  of the semi.axes of the el l ipsoid is obtained. As an example ,  the effect  of the magne t -  
ic field on the s y m m e t r i c a l  flow of the suspension in a cont rac t i le  cy l inder  is cons idered .  

An intensive exper imenta l  and theore t ica l  investigation of suspens ions  of fine f e r romagne t i c  pa r t i c l e s  
(ferroliquids) has recent ly  been made. The l inear  d imensions  of the pa r t i c l e s  v a r y  f rom 10 -6 to 10 -5 cm,  
while the magnetic moment  ~ may reach  104-105 Bohr magnetons.  If the externa l  magnetic field H is 
smal l  compa red  with the internal  anisot ropy field, the magnetic moment  can be a s sumed  to be t ightly bound 
to the pa r t i c l e s  (this p rob l em  is d i scussed  in more  detail  in [1]). On the other  hand, due to the high value 
of ~ the d imens ion less  field ~ = ~H/kT may reach values  of the o rde r  unity even when H ~ 10 2 0 e  and at 
room t e m p e r a t u r e .  

The volume densi ty of the solid phase  r is a s sumed  to be fa i r ly  smal l  so that interact ion between the 
pa r t i c l e s  can be neglected.  The motion of the pa r t i c l e s  in the liquid is then governed by hydrodynamic 
forces ,  the or ient ing action of the field, and t h e r m a l  f luctuations (the Brownian motion of the par t ic les ) .  

When the re  is no field the v i scos i ty  of the suspension i nc rea se s  as  c o m p a r e d  with the init ial  v i scos i ty  
of the liquid. The magnetic field p reven ts  f ree  rota t ion of the pa r t i c l e s  in the vo r t ex  flow, which leads  to 
additional, rotat ional ,  v i scos i ty  [2]. If the pa r t i c l e s  have a nonspher iea l  shape, the field hinders  the i r  
s t r eaml ine  flow even with a s y m m e t r i c a l  flow. In this  case ,  as  shown below, the relat ion between the s t r e s s  
t enso r  of the suspension and the ve loc i ty  gradient  t enso r  is de te rmined  by six independent kinetic coef f i -  
c ients ,  which depend on the shape of the pa r t i c l e s  and on the magnetic field. S imi la r  effects  a lso  occur  in 
an ex te rna l  f ield in po la r  gases  (the Z e n f t l e b e n - B e e n a k k e r  effect  [3]). Although the nature  of these  phenom-  
ena in suspens ions  and gase s  a r e  different ,  the equations of motion of a fe r ro l iqu id  and a pa ramagne t i c  
gas a r e  a lmos t  identical,  so that  these  s y s t e m s  behave in a s i m i l a r  manner  in a magnetic field. 

1. Regular  Motion of a Magnetized El l ipsoid in a Flow. We will a s sume  that  the pa r t i c l e s  of the s u s -  
pension a r e  e l l ipsoids  of rotation.  The shape of the e l l ipsoids  with s emiaxes  a and b (b is the radius  of 
the c i r c u l a r  c r o s s  section) can be r e p r e s e n t e d  by a d imens ion less  ra t io  s o r  by the nonspher ic i ty  p a r a m -  
e t e r  

s = a / b ,  Z,. = (s 2 - -  t ) / ( s  s -}- t )  ( 1 . 1 )  

We will desc r ibe  the or ienta t ion of the el l ipsoid by a single vec to r  e, d i rec ted  along its axis  of s y m -  
met ry .  Assuming  that  the magnetic moment  is s t rongly  coupled to the par t ic le ,  we have m =  ~e.  The 
mean value of m defines the magnet izat ion of the suspension of nouinteract ing el l ipsoids  

M = ~ (m) /V1 ,  V 1 = 4 ~abV3 (1.2) 
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A par t ic le  in a magnetic field is acted on by the moment of the forces  

�9 m • H = kT~e • h (1.3) 

(here h is the unit vec tor  di rected along the field). In an a rb i t r a ry  flow of incompress ib le  liquid v (r) the 
ellipsoid of rotation is acted upon by the moment of the forces  (see, for example [4, 5]) 

2 ~ioV1S t [Qi - -  f . t ) i  2C ~elkLehe,,V,~] 
(1.4) 

(w is the angular veloci ty of a part icle).  The fac tor  in front of the square brackets  in Eq. (1.4) is the ro ta -  
tional mobility of the par t ic les .  Using the Einstein relation, we obtain the coefficient  of rotational diffusion 

D 

D = kT/4 ~oV~S1 (1.5) 

The function St(s), which defines the dependence of D on the rat io of the semiaxes of the ellipsoid s, 
is derived in the appendix. 

2. Rational Diffusion. When the dimensions of the par t ic les  of the suspension a re  less  than 10 -4 cm, 
it is neces sa ry  to take their  rotational Brownian motion into account. We will introduce the probabili ty 
W (e, t) dv that the direct ion of the axis of a par t ic le  lies in the element of solid angle dr.  The Brownian 
motion leads to an additional random moment of the fo rces  acting on the par t ic le  [6] 

- -  k T i N  lnW (N = -- ie  • O/Oe) (2.1) 

For  the rotational diffusion the opera to r  of infinitely small rotation N plays the same role as the 
opera tor  grad for t ransla t ional  diffusion. Note that N is a self-adjoint  operator .  The F o k k e r - P l a n c k  
equation, which descr ibes  the rotational Brownian motion, can be wri t ten in the f o r m  

OW/Ot + (iNto) W = 0 (2.2) 

If we neglect the inert ia  of the par t ic les ,  the angular veloci ty of the i r  rotation o~ is found by equating 
to zero the sum of the moments of the magnetic (1.3), hydrodynamic (1.4), and random (2.1) forces .  This 
gives 

tot = D (elk~ek~ - -  iNi  In W) +[2 i + 3.ei~lekemVzra (2.3) 

Equation (2.2) together  with relation (2.3) plays the role of the kinetic equation for  the ferromagnet ic  
par t ic les  suspended in the liquid. In a s tat ionary suspension the s ta t ionary solution of (2.2) and (2.3) is 

W 0 : C exp (e~) (2.4) 

(The constant  C is found f rom the normalizat ion condition.) 

The re laxa t ion t ime of the distribution function W to the equilibrium value W 0 is of the o rde r  of 1/D. 
Taking the v i scos i ty  of the liquid as ~0 ~ 10-2 g / c m .  sec, kT ~4  �9 10 -14 erg,  V 1 ~ 10 -t8 cm a, and assuming 
for [logs[ ~ I , S  1 ~10, we obtain from Eq. (1.5), 1/D ~ 10 -5 sec. This t ime is small  compared  with the hy- 
drodynamic t imes  plZ/~o  ([ is the hydrodynamic scale of length), so that in fact we have to be concerned 
with the s ta t ionary solution of the F o k k e r - P l a n c k  equation. In addition, 1/D is also small  compared  with 
the velocity gradients.  The condition f l /D << 1 is satisfied for all reasonable values of ~2. We will t he re -  
fore seek the distr ibution function of the moving suspension in the form 

W -- W0 (l + Z) (2.5) 

where X is a small  cor rec t ion ,  which is l inear  with respec t  to the veloci ty  gradients  ~ik and Vik. In what 
follows it is convenient to introduce the following notation: 

<A) - - - - IAWdv ,  < A ) o = S A W o d v  (2.6) 

The normalizat ion condition leads to the following additional relat ion for the function X: ( )/>0 =0. 
A ssuming the p roper t i es  of spatial s y m m e t r y  of • we can write 

X = xle~hif2th + X2 (e~ek --<e~eh)o) Vlh (2.7) 

where Xi and X2, general ly  speaking, a re  unknown functions of e~ and ~. Note that in what follows it will 
not be these functions which will be n e c e s s a r y  but funetionals of a form (ei• 
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To calcula te  Xt and X2 we can use  approx imate  methods developed in the kinetic theory  of gases  [7]. 
H e r e  it is convenient  to use the C h a p m a n - E n s k o g  var ia t iona l  method. In the s t eady- s t a t e  case  Eqs.  (2.2) 
and (2.3) can be rewr i t t en  in the fo rm 

iNi (f~, + Xe,k,eke~V,,,) W = DiNl  (iN, ~ e,k,e~t) W (2.8) 

The r ight-hand side of Eq. (2.8) plays  the role  of the "col l is ion integral"  and vanishes  when W =W 0. 
In accordance  with the chosen method, we a s s u m e  Xl and X9 to be independent of e i. Substituting Eqs.  (2.5) 
and (2.7) into Eq. (2.8), multiplying the la t te r  by e i, and integrat ing ove r  the angles ,  taking into account the 
Herml t i an  e h a r a c t e r  of the ope ra to r  N, and Eqs.  (A. 4) and A.5), we obtain two equations which de te rmine  
Xl and X2. As a r e su l t  we have 

~ --- LI~/D (~ - -  L,),  Xz = )J2 D (2.9) 

where the functions Ln(~) a r e  de te rmined  in the appendix. Note that  the value obtained for  X2 is accura te .  

Using the dis tr ibut ion function (2.5), and re la t ions  (1.2), (2.7), and (2.9), we will ca lcula te  the volume 
densi ty of the moment  of the fo rces  It[ x H ,  which ac ts  on the moving suspension f r o m  the magnetic field 
side 

(M • H)i = --4 [~r (fli --  hihkOk) + Yel~,lhhh,,~Vt~] 
(2.10) 

llr = ~oq)Sl~Ll 2 1(~ - -  L,), "7 = 'lo'~)~S1L~ 

The meaning of the coeff ic ients  Vr and y will become c l ea r  in the following section.  

3. The S t r e s s  Tensor .  The s t r e s s  t enso r  of the suspension r~ik Is best  divided into two t e r m s ,  by 
separa t ing  f r o m  it the Maxwell t e n s o r  ~ik 

Elh = O:p, + ~ , ,  ~th = (HiBh - - / / ' 5 t~I2) /4  ~ (3.1) 

The t en so r  a i k  is found f rom the solution of the auxi l ia ry  hydxodynamic p r o b l e m  of the per tu rba t ion  
of the flow of liquid by the moving e l l ipsoid  [4, 5]. After  averag ing  the pe r tu rbed  s t r e s s  t en so r  and the 
ve loc i ty  gradient  t en s o r  ove r  the spat ia l  coordina tes ,  and over  the or ienta t ions  of the el l ipsoid,  we can wri te  

(hh = o'~ + et~loz a + aik" (3.2) 

where  the s c a l a r  a ~ the vec t o r  ~ff, and the s y m m e t r i c a l  t e n s o r  ~ ik  s (a i i  =0) have the f o r m  

o~ = - -P  + ~lo~kx<ele,,,> Vl,,, (3.3) 
= --x/2M "< H (3.4) 

~i~' = 2~lo [(I + ~ko) V,~ + ~ (kf<e,e,.Skt + e~te~,,) + 

+ k~<e,e,n>6,~ + k~<e,e~e,em)) V,m + ~ks<e.~e~6,, + e,e,~Sh,> f~,ml (3.5) 

In these  exp res s ions  we mean by Vik and ~ ik  the quant i t ies  (1.4), obtained by averaging,  which we 
mentioned above. The coeff ic ients  kn depend on s. When der iv ing re la t ions  (3.3)-(3.5) we used Eq. (2.8). 

Although a i k  contains the nonsymmet r i ca l  pa r t  (3.4), the comple te  s t r e s s  t e n s o r  Z ik taking into 
account the Maxwell t enso r  ~ ik is s y m m e t r i c a l .  

When ca lcula t ing  the a v e r a g e s  which occur  in Eqs.  (3.3) and (3.5) in the approx imat ion  which is 
l inear  with r e spe c t  to ~ ik  and Vlk , it is sufficient to confine ou r se lves  to the functions W 0. In Eq. (3.4), it 
is n e c e s s a r y  to take into account the per tu rba t ion  of the dis t r ibut ion function due to the motion of the liquid 
(see Section 2). Using Eqs.  (A.4)-(A.6) and re la t ion  (2.10), we obtain 

a ~ = - -p  + 3 ~Jh~ht~V~ (3.6) 

o(' = 2 ~lr ( ~  - -  h i h ~ , )  + 2 ,~e~h~h,,~V~,,~ (3.7) 

o~ = 2(2~ h - -  "qz) V~ + 2 [('q~ - -  ~l~)h~h,.61~ + ('qx + ~1, - -  

- -  2~,)(h~6,~ + h~Su.)ht + ('Ix + ~h - -  2~h)hch~hthm]V~m + 2~(h15.~ + h~5~,~)h:O.~,~ (3.8) 

The kinetic coeff ic ients  ~?n (n =1, 2, 3), fl, T, and ~r which occur  here  depend upon ~ and s 

= 'loq)SsL~ (3.9) 
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while in the coefficients ~n it is convenient to separate  the par t  which is independent of the field 

~ =~0-~  a~0+  A,i~ (n = 1 ,  2, 3) 

where 

(3.10) 

Aq~ = q0(PSsL4, A~I~ = ~10q) (S,L~ + S~L~/~) 
(3.11) 

The functions Ln(~ ) and Sn(S) are  determined in the appendix. 

To explain the meaning of the kinetic coefficients  introduced above it is neces sa ry  to write the s t r e ss  
t ensor  (3.6)-(3.8) for  the case  of a field H directed along the x axis. Then, compar ison  with the phenomeno- 
logical equations in [8] shows that the quantity 77 r is the rotational v iscos i ty  of the suspension, since it con-  
nects the cor responding  components ~ l  and ~i. Note that the component ~2, paral le l  to H, makes no con t r i -  
bution to the s t r e s s  tensor ,  since in this case  the magnetic field does not hinder the rotation of the par t ic les ,  
and additional energy  dissipation does not occur .  

The quantities ~n have the meaning of shear  viscosi t ies  (compare with [8]). 

The coefficient  fl is a c r o s s  between the shear  and volume effects of the v iscous  friction, while T 
is a c r o s s  between the effects of the rotational and shear  fr ict ions.  The Onsager  s y m m e t r y  principle is 
satisfied for the c r o s s  coefficients.  

All the kinetic coefficients are  even functions of the magnetic field. The absence of odd effects is due 
to the specific features  of the chosen model (the fact that e and m are  parallel) .  

If the field II =0, the s t r e s s  t ensor  of the suspension takes  the form 

El~ --- --p6~k + 2 (~o + ATIo) V~ 

i.e., h70 determines  the increase  in the v i scos i ty  of the suspension compared  with the initial v iscos i ty  of 
the liquid. For  spherical  par t ic les  (s =1), S 2 =5/2,  and Eq. (3.11) gives the well-known Einstein result .  

Using the expansion in ser ies  of the functions Ln(~ ) (See. 3), and express ions  (2.10), (3.9), and (3.11), 
it can be seen that for  small  fields (~ ~ 1), A72 ~ ~4, while the remaining coefficients  increase  as the square 
of the field. Since L n - -  1, when ~ >> 1, we obtain that in intense fields all the coefficients cease  to depend 
on the field. In this case  •, T, 7r and A 72 saturate  according  to the same law for all values of s. In Fig, 2 
the curves  show the rat io of the kinetic coefficients to their  values when ~ - -  oo as a function of the dimen-  
s ionless  magnetic field i : i) A72/A72(~ =L4, 2) &771/~71 (oo) for s=0.1, andA~?3/A~3 (oo) for s=10, 3) 
T/Y (r fl/fl(oo)=L2 ' 4) A 71/A~ 1 (r for s=10, 5) 7rfl? r (oo), 6) Av3/A~ 3 (~) for s=0.1. For large (small) 
values of s, A 71 (A73) saturates somewhat earlier than for small (large) values of s. 

In Flg. i the curves show the kinetic coefficients as a function of the ratio of the semiaxes of the 
ellipsoid s for saturation (~ -- oo ): 1) V r ( ~)/~0~ =St, 2) T (oo)/~?0 (P =)~SI, 3) A70 fl?0 ~ =S2, 4) AV 1 (oo)/7 0 ~ = 
S 3, 5) A73 (oo)/~0~ =$6, 6) fl (oo)/~09 =$8, 7) A72 (oo)/70~ =S 5. Note that when changing from oblate particles 
(s < 1) to elongated particles ( s > 1), A~l, A~3, T, P change sign; A~ 2 is always negative while qr is always 
positive. For spherical particles only the rotational viscosity differs from zero. Using Eqs. (A.9)-(A.I1) 
we can explain the dependence of the kinetic coefficients on s in different limiting cases. 

4. Discussion. Since in a uniform magnetic field (0~ik/3Xk) =0, only the part of the stress tensor 
qik makes a contribution to the equation of motion of the liquid 

pOv~/Ot = Oaik/ ~xk (4.1) 

Substituting Eqs. (3.2), (3.6)-{3.8) into Eq. (4.1) and taking into account the other  equat ior lsofhydrodynamics ,  
Which have the usual form, we obtain the complete  sys tem of hydrodynamic equations of the fe r rosuspens ion  
in a magnetic field (with the usual boundary conditions for  the veloci ty  and the field). 

In o rde r  to establ ish the possibil i ty of exper imental ly  measur ing  the kinetic coefficients,  we must 
consider  specific examples  of the flow of a ferroliquid.  

The motion of a suspension of spher ical  par t i c les  in a c i r cu la r  capi l la ry  was cons idered  in [2], and 
the par t  played by the rotational v i scos i ty  was clarif ied.  

We note fur ther  that Eq. (4.1) with the s t r e s s  tensor  (3.6)-(3.8) has the same form as in the case  of 
a paramagnet ie  gas (if we put ~?r = T =0). Plane Polseuil le  flow in a magnetic field is cons idered  for a gas 
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Fig. 2 

in [8], and it is shown that all the v i scos i ty  coefficients can be obtained from measurements  of the flow 

ra te  and the t r ansve r se  p res su re  gradient in a rectangular  capi l lary  for  different orientat ions of the field. 
It is obvious that these resul ts  can be t r ans f e r r ed  to the case  of a fe r rosuspens ion  bear ing in mind the 
small  changes due to the presence  in ~lk of t e r m s  proport ional  to ~r and T- (As can be shown, using 
perturbat ion theory  developed in [10], in a gas a coefficient of the type 7 should be proport ional  to t 2 ~2. 
Since for gas molecules  X ~ 1/5, while g is of the o rder  of the Bohr magneton, for all reasonable  t empera -  
tu res  T is negligibly small  for gases.)  

To c lar i fy  the par t  played by the coefficient ~/, we will calculate the moment of the f o r c e K w h i c h a c t s  
on a ferrol iquld for uniaxial symmet r i ca l  flow of the form 

v = a (r/3 -- kz) (4.25 

(the unit vec tor  k is directed along the z axis). This type of flow occurs ,  for  example, if the liquid is inside 
a cylinder,  on the base of which constant  forces  act which lead to compress ion  of the cyl inder  at constant  
volume. 

To calculate K we integrate (2.10) over  the volume of the cyl inder  V. In this  case  to a f i r s t  approxi-  
mation with respec t  to q it is sufficient to confine ourse lves  to the unperturbed motion (4.2). Choosing 
the x axis in the kh plane, and denoting by 0 the angle between the axis of the cyl inder  k and the direct ion of 
the field, we obtain 

K =4aTV(hk) h •  Kx = K~ = 0 ,  K~ =2aTVsin2O (4.35 

As can be seen f rom Eqs. (4.3), the moment of the fo rces  acting on the cyl inder  a r i ses  ff s imul-  
taneously h x ~ 0, and hz~  0, and reaches  a maximum value when h x = h z (0 =45~ It is interest ing to note 
that the moment of the forces  depends ve ry  much on the shape of the par t ic les ,  and changes sign when the 
par t ic les  change f rom being oblate to elongated. 

In conclusion I wish to thank M. L Shliomis, and Yu. L. Raft<her for  useful discussion.  

Appendix. The moments  of the distr ibution function W 0 f rom Eq. (2.4) can be expressed  in t e r m s  of 
the function 

z ~  (~) = z ~ + , , / z , ,  (A.1) 

where I n + l / 2  (~) is the Bessel  function of imaginary argument.  It follows from (A.1) that I~ =1 while L 1 is 
identical with the Langevin function 

LI = L = cth ~ -- 1 / ~ (A.25 

The functions L n with n > 1 can be obtained f rom the r ecur rence  relat ions for  Bessel  functions: 

Ln_ I - L n + ! = (2n + 1) Ln /~ .  

If ~ -* ~o we have Ln= 1+O(1 /~ ) ,  and when ~ --* 0 

We will now derive the moments of the function W 0 

<et)o ~ Ltht, <ete~) 0 ~ (LI / ~)81~ zc L~hthk ( A . 4 )  
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<etcher>0 = (/a / ~) (hi6~t "b h~:Si! -[-.htSi~) -[- Lshihi;h! (A .5) 

<ete~eze,n>o = (/-4 / ~2) (8tkbzm -b 8imb~t '+ 8izSkm) -{- (La / ~) (hih~6tm -b hlh,n6al -b ...) -{- Lahih~hzhm (A .6) 

The  funct ion Sn(s) , which  d e t e r m i n e s  the dependence  of  the kinet ic  coe f f i c i en t s  on the ra t io  of  the 
s e m i a x e s  of  the  e l l ipsoid ,  can  be r e p r e s e n t e d  in the f o r m  of l i nea r  c o m b i n a t i o n s  of  the funct ions  f m  

$i 

'Yn = ~j anm/m (n = i. 2 . . . . .  8) (A.7) 
?}1~1 

h = los / ,  (2, - ~ / 9 (s 2 - t) ,  1, = 4 (s* - t) ~ / 9s (4~ - los  § M )  

18=4X(~-- I)/3 (2~-b4--3sJ), h=  2(s a - l )  8/9s(2~]-b J'--6s) 

]6~4k(s ' - - t )~ /~[(2s2--1)J- -2s] ,  J =  ~ dx / ( t  +z)(s~-~-x)" 
0 

while  the coe f f i c i en t s  a n m  c a n  be wr i t t en  in the f o r m  of the m a t r i x  

0 0 0 0 0 0 0 i 

amn = 2 --2 24 --2 3 --t6 
2 8 --36 3 --2 24 - - i 0 ]  

/ 
\ z / ~  2 - -2  t2 - -2  3 - - t 6  0 

(A.S) 

These  equa t ions  c a n  be  s impl i f i ed  c o n s i d e r a b l y  in the  l imi t ing  c a s e s  of  v e r y  f la t tened,  e longated,  
and c lo se  to  s p h e r i c a l  p a r t i c l e s .  F o r  s << 1 we have 

s,~ = 2a~ / 9~ (A.9) 

where the numerical coefficients a n (n=1.2,..., 8) can be written in the form of a row an=(9 16 -6 24 -1  
- z  - s  - ' ~  

have  

If s >>1, we have S 8 = 2/3, while f o r  the o the r  funct ions  S n we obtain  

S,~ = bns ~ / 9 in s (n @ 8; bn = 4.5 60 5 t8 --t.5 7.5 --i2) (A. 10) 

F o r  p a r t i c l e s  which a r e  a l m o s t  s p h e r i c a l  (~-*0) ,  S n = 0  (}2) fo r  n = 4 ,  5, 7; fo r  o the r  va lues  o f  n we 

3 6 5 
S,:= "5" -- ~ X, S~ = - T  -~ 0 (~2), 

25 25 20 
(A.I1) 
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