VISCOSITY OF A SUSPENSION OF ELLIPSOIDAL
FERROMAGNETIC PARTICLES IN A MAGNETIC FIELD

M. A. Martsenyuk UDC 532,13 +538.245 +538.4

The motion of a suspension of solid magnetized ellipsoids of rotation in a uniform magnetic
field is considered. The ellipsoids are assumed to be magnetized along the axes of symmetry.
Relaxation processes in the solid phase are not considered. The stress tensor of the suspen-
sion is calculated taking into account the rotational Brownian motion of the particles. It is
shown that the viscosity tensor contains six independent kinetic coefficients, which are even
with respect to the magnetic field. The relation between these coefficients and the field and
the ratio of the semiaxes of the ellipsoid is obtained. As an example, the effect of the magnet-
ic field on the symmetrical flow of the suspension in a contractile cylinder is considered.

An intensive experimental and theoretical investigation of suspensionsof fine ferromagnetic particles
(ferroliquids) has recently been made. The linear dimensions of the particles vary from 107% to 10™° cm,
while the magnetic moment 4 may reach 104—10° Bohr magnetons. If the external magnetic field H is
small compared with the internal anisotropy field, the magnetic moment can be assumed to be tightly bound
to the particles (this problem is discussed in more deétail in [1]). On the other hand, due to the high value
of u the dimensionless field £ = uH/kT may reach values of the order unity even when H ~ 102 Oe and at
room temperature. :

The volume density of the solid phase ¢ is assumed to be fairly small so that interaction between the
particles can be neglected. The motion of the particles in the liquid is then governed by hydrodynamic
forces, the orienting action of the field, and thermal fluctuations (the Brownian motion of the particles).

When there is no field the viscosity of the suspension increases as compared with the initial viscosity
of the liquid. The magnetic field prevents free rotation of the particles in the vortex flow, which leads to
additional, rotational, viscosity [2]. If the particles have a nonspherical shape, the field hinders their
streamline flow even with a symmetrical flow. In this case, as shown below, the relation between the stress
tensor of the suspension and the velocity gradient tensor is determined by six independent kinetic coeffi-
cients, which depend on the shape of the particles and on the magnetic field. Similar effects also occur in
an external field in polar gases (the Zenftleben —Beenakker effect [3]). Although the nature of these phenom-
ena in suspensions and gases are different, the equations of motion of a ferroliquid and a paramagnetic
gas are almost identical, so that these systems hehave in a similar manner in a magnetic field.

1. Regular Motion of a Magnetized Ellipsoid in a Flow. We will assume that the particles of the sus-
pension are ellipsoids of rotation. The shape of the ellipsoids with semiaxes a and b (b is the radius of
the circular cross section) can be represented by a dimensionless ratio s or by the nonsphericity param-

eter A

s =alb, b= (st — D)/(s* + 1) (1.1)

We will describe the orientation of the ellipsoid by a single vector e, directed along its axis of sym-
metry. Assuming that the magnetic moment is strongly coupled to the particle, we have m= pe. The
mean value of m defines the magnetization of the suspension of noninteracting ellipsoids

M = ¢ <m}/V,, V, = 4 nab*/3 (1.2)
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A particle in a magnetic field is acted on by the moment of the forces
‘mX H=EkTte x h (1.3)

(bere b is the unit vector directed along the field). In an arbitrary flow of incompressible liquid v (r) the
ellipsoid of rotation is acted upon by the moment of the forces (see, for example [4, 5])

210V, 8, [Q; — o; + AeinienenViml

119 F a0 (1.4)
o o Uk v I WY s Dy X

Qi = e Q '_T(aT_E)’ Vik—T(a—xKJra—Ii), Vi=0

(w is the angular velocity of a particle). The factor in front of the square brackets in Eq. (1.4) is the rota-
tional mobility of the particles. Using the Einstein relation, we obtain the coefficient of rotational diffusion

D
D = kT/4 nOVISl (1'5)

The function S,(s), which defines the dependence of D on the ratio of the semiaxes of the ellipsoid s,
is derived in the appendix.

2. Rational Diffusion. When the dimensions of the particles of the suspension are less than 107 cm,
it is necessary to take their rotational Brownian motion into account. We will introduce the probability
W (e, t) dv that the direction of the axis of a particle lies in the element of solid angle dv. The Brownian
motion leads to an additional random moment of the forces acting on the particle [6] ‘

—ETiNInW (N = —ie X 0/0e) 2.1)

For the rotational diffusion the operator of infinitely small rotation N plays the same role as the
operator grad for translational diffusion. Note that N is a self-adjoint operator. The Fokker—Planck
equation, which describes the rotational Brownian motion, can be written in the form

oW/t 4- (iNe) W =0 (2.2)

If we neglect the inertia of the particles, the angular velocity of their rotation « is found by equating
to zero the sum of the moments of the magnetic (1.3), hydrodynamic (1.4), and random (2.1) forces. This
gives

w; = D (e,—h,ek?;, —_ lN, In W) +Q, + leik,ehemV,m (2.3)

Equation (2.2) together with relation (2.3) plays the role of the kinetic equation for the ferromagnetic
particles suspended in the liquid. In a stationary suspension the stationary solution of (2.2} and (2.3) is

W, = C exp (e}) (2.4)
(The constant C is found from the normalization condition.)

The relaxationtime of the distribution function W to the equilibrium value W; is of the order of 1/D.
Taking the viscosity of the liquid as 7, ~10~2 g/cm- sec, kT ~4 - 10~ erg, Vv, ~ 10~ cm?, and assuming
for |logs| ~1,s,~10, we obtain from Eq. (1.5), 1/D ~ 10~ sec. This time is small compared with the hy-
drodynamic times pl%/m, (I is the hydrodynamic scale of length), so that in fact we have to be concerned
withthe stationary solution of the Fokker—Planck equation, In addition, 1/D is also small compared with
the velocity gradients. The condition /D < 1 is satisfied for all reasonable valuesof 2. We will there-
fore seek the distribution function of the moving suspension in the form

W=Ww,(1+1 (2.5)

where x is a small correction, which is linear with respect to the velocity gradients Qi and V. In what
follows it is convenient to introduce the following notation:

Ay =§awav, <Ay, ={aw,av (2-6)
The normalization condition leads to the following additional relation for the function x: { x ), =0.
Assuming the properties of spatial symmetry of y, we can write
% = Yaexhi&in + Az (e:€x —<eilrd0) Vi (2.7)

where x, and x,, generally speaking, are unknown functions of e£ and §. Note that in what follows it will
not be these functions which will be necessary but functionals of a form (ejx),.
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To calculate x, and X, we can use approximate methods developed in the kinetic theory of gases [7].
Here it is convenient to use the Chapman—Enskog variational method. Inthe steady-state case Egs. (2.2)
and (2.3) can be rewritten in the form

iIN; (Qi + AeyyeremVim) W = DiN, (iN; — enend) W (2.8)

The right-hand side of Eq. (2.8) plays the role of the "collision integral" and vanishes when W=W,.
In accordance with the chosen method, we assume x,; and x, to be independent of e;. Substituting Eqs. (2.5)
and (2.7) into Eq. (2.8), multiplying the latter by e;, and integrating over the angles, taking into account the
Hermitian character of the operator N, and Eqgs. (A. 4) and A.5), we obtain two equations which determine
X1 and x,. As a result we have

X = LiED (E — Ly), 3, =M2D (2.9)
where the functions L,(£) are determined in the appendix. Note that the value obtained for x, is accurate.

Using the distribution function (2.5), and relations (1.2), (2.7), and (2.9), we will calculate the volume
density of the moment of the forces M x H, which acts on the moving suspension from the magnetic field
side

(‘l X H)i = —4 ['r], (Qi - hithk) + yemzhhhmV,m]

(2.10)
N = Mo@S8,EL /(E — L), v = no@hSiL,

The meaning of the coefficients n,. and y will become clear in the following section.

3. The Stress Tensor. The stress tensor of the suspension g i is best divided into two terms, by
separating from it the Maxwell tensor iy

Zin = oy - T, gy = (H By — H%,,/2)/4 n 3.1

The tensor o) is found from the solution of the auxiliary hydrodynamic problem of the perturbation
of the flow of liquid by the moving ellipsoid [4, 5]. After averaging the perturbed stress tensor and the
velocity gradient tensor over the spatial coordinates, and over the orientations of the ellipsoid, we can write

O = 0°0;p + eno,* + 03’ 3.2
where the scalar ¢°, the vector ala , and the symmetrical tensor o k5 (0j=0) have the form

0° = —p + nopki(emd Vim : (3.3)

o¢=—1MxH (3.4)

0w’ = 21, [(1 + ko) Vin + @ (kx(eiembn + exemSud +
+ ks{eemdBin + kieiereiend) Vim + @ksemerby + eiendud Qiml (8.5)

In these expressions we mean by Vik and Qi the quantities (1.4), obtained by averaging, which we
mentioned above. The coefficients ky, depend on s. When deriving relations (3.3)-(3.5) we used Eq. (2.8).

Although o contains the nonsymmetrical part (3.4), the complete stress tensor ry taking into
account the Maxwell tensor 7 j; is symmetrical.

When calculating the averages. which occur in Egs. (3.3) and (3.5) in the approximation which is
linear with respect to Qjk and Vyy, it is sufficient to confine ourselves to the functions W;. In Eq. (3.4), it
is necessary to take into account the perturbatfon of the distribution function due to the motion of the liquid
(see Section 2). Using Eqs. (A.4)-(A.6) and relation (2.10), we obtain

0° = —p + 3BhhsVix (3.6)
0 =21 (Q — kb)) + 2 YermbihnVim ' 3.7
ol = 220, — my) Vin + 2[(; — nhthmbie + (3 + 15 —
— 20, (BB + BaBimdt + (M1 + Mg — 20oWeikihihn]Vim + 2Y(Biimic + i Qi (3.8)
The kinetic coefficients 7, (n=1, 2, 3), B, v, and 1, which occur here depend upon { and s
B= nepSsL, (3.9)
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while in the coefficients 7, it is convenient to separate the part which is independent of the field

="+ A + An, (n =1, 2, 3) (3.10)
where
ANy = M09Sz Any = 4@ (SsLy + SLy/E)
Ang = ,0S85Ly, Ang = 1@ (SsLy + S:Ly/E)

(3.11)

The functions Ln(E) and S, (s) are determined in the appendix.

To explain the meaning of the kinetic coefficients introduced above it is necessary to write the stress
tensor (3.6)~(3.8) for the case of a field H directed along the x axis. Then, comparison with the phenomeno-
logical equations in [8] shows that the quantity 7,. is the rotational viscosity of the suspension, since it con-
nects the corresponding components of and 2. Note that the component Q, parallel to H, makes no contri-
bution to the stress tensor, since in this case the magnetic field does not hinder the rotation of the particles,
and additional energy dissipation does not occur.

The quantities n,, have the meaning of shear viscosities (compare with [8]).

The coefficient 8 is a cross between the shear and volume effects of the viscous friction, while v
is a cross between the effects of the rotational and shear frictions. The Onsager symmetry principle is
satisfied for the cross coefficients.

All the kinetic coefficients are even functions of the magnetic field. The absence of odd effects is due
to the specific features of the chosen model (the fact that € and m are parallel),

If the field H=0, the stress tensor of the suspension takes the form
Zin = —pbin + 2 (M + Ang) Vi

Le., An, determines the increase in the viscosity of the suspension compared with the initial viscosity of
the liquid. For spherical particles (s=1),S, =5/2, and Eq. (3.11) gives the well-known Einstein result.

Using the expansion in series of the functions L, (£) (Sec. 3), and expressions (2.10), (3.9), and (3.11),
it can be seen that for small fields (£ € 1), An, ~ £4, while the remaining coefficients increase as the square
of the field. Since L, — 1, when £ > 1, we obtain that in intense fields all the coefficients cease to depend
on the field. In this case B,v, npand A n2 Saturate according to the same law for all values of s. In Fig. 2
the curves show the ratio of the kinetic coefficients to their values when £ — « as a function of the dimen-
sionless magnetic field £: 1) Any/An,(») =Ly, 2) AnyAn, (=) for s=0.1, and Any/An, (=) for s=10, 3)

YAy (®) = B/B(x) =Ly, 4) Any /AN, () for s =10, 5) Np Mp (), 6) Ang/A 1y () for s=0.1. For large (small)
values of s, A7, (A7;) saturates somewhat earlier than for small (large) values of s.

In Fig. 1 the curves show the kinetic coefficients as a function of the ratio of the semiaxes of the
ellipsoid s for saturation ({ — «): 1) Nr () /M@ =8, 2) v () /M ¢ =ASy, 3) Ay My @ =S,, AN (®)/Mg@ =
S3, 5) Amg () /19 =8, 6) B (=) /Mye =83, 7) ANy (2)/my¢ =S;. Note that when changing from oblate particles
(s < 1) to elongated particles (s> 1), ATy, AN, v, B change sign; A7, is always negative while Ty is always
positive. For spherical particles only the rotational viscosity differs from zero. Using Eqgs. (A.9)-(A.11)
we can explain the dependence of the kinetic coefficients on s in different limiting cases.

4. Discussion. Since in a uniform magnetic field ( 87y, /8x)) =0, only the part of the stress tensor
0jk makes a contribution to the equation of motion of the liquid

pov;/0t = 80,/ 9z, 4.1)

Substituting Eqs. (3.2), (3.6)-(3.8) into Eq. (4.1) and taking into account the other equations of hydrodynamics,
which have the usual form, we obtain the complete system of hydrodynamic equations of the ferrosuspension
in a magnetic field (with the usual boundary conditions for the velocity and the field).

In order to establish the possibility of experimentally measuring the kinetic coefficients, we must
consider specific examples of the flow of a ferroliquid.

The motion of a suspension of spherical particles in a circular capillary was considered in (21, and
the part played by the rotational viscosity was clarified.

We note further that Eq. (4.1) with the stress tensor (3.6)-(3.8) has the same form as in the case of
a paramagnetic gas (if we put 7,= vy =0). Plane Pofseuille flow in a magnetic field is considered for a gas
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in [8], and it is shown that all the viscosity coefficients can be obtained from measurements of the flow
rate and the transverse pressure gradient in a rectangular capillary for different orientations of the field.
It is obvious that these results can be transferred to the case of a ferrosuspension bearing in mind the
small changes due to the presence in o) of terms proportional to 7, andy. (As can be shown, using
perturbation theory developed in [10], in a gas a coefficient of the type y should be proportional to A% £2,
Since for gas molecules A ~1/5, while i is of the order of the Bohr magneton, for all reasonable tempera-
tures <y is negligibly small for gases.)

To clarify the part played by the coefficient v, we will calculate the moment of the force K which acts
on a ferroliquid for uniaxial symmetrical flow of the form

v = a (r/3 — kz) 4.2)
(the unit vector k is directed along the z axis). This type of flow occurs, for example, if the liquid is inside

a cylinder, on the base of which constant forces act which lead to compression of the cylinder at constant
volume,

To calculate K we integrate (2.10) over the volume of the cylinder V. In this case to a first approxi-
matfon with respect to ¢ it is sufficient to confine ourselves to the unperturbed motion (4.2). Choosing
the x axis in the kh plane, and denoting by ¢ the angle between the axis of the cylinder k and the direction of
the field, we obtain
K =‘4ayV (hk) h x k, K, = K, =0, K, = 2ayV sin 20 4.3)

As can be seen from Eqs. (4.3), the moment of the forces acting on the cylinder arises if simul-
taneously hy # 0, and h, # 0, and reaches a maximum value when by =h, (§ =45°). It is interesting to note
that the moment of the forces depends very much on the shape of the particles, and changes sign when the
particles change from being oblate to elongated.

In conclusion I wish to thank M. I. Shliomis, and Yu. L. Raikher for useful discussion.

Appendix. The moments of the distribution function W, from Eq. (2.4) can be expressed in terms of
the function )

L, (§) = IM.‘/, / 11{, (A.l)

where L ., /,(£) is the Bessel function of imaginary argument. It follows from (A.1) that Ly =1 while L, is
identical wéh the Langevin function
Li=L=cthi—1/¢t (A.2)
The functions L, with n > 1 can be obtained from the recurrence relations for Bessel functions:
Lyt~ Lpy1=@n+1) Lp/t. '
If £ - «, we have Lp=1+0(1/%), and when § — 0

n

d n [} .
Ln = @ ron (“3(zn+3) E’TO(”:‘)) (A.3)
We will now derive the moments of the function W,
Cedo = Lihi,  <Leiexdo= L1/ E)Bix + Lahih (A.4)
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Cesenerdo = (Ly / §) (Ridiy -+ Mybiy + hyBix) + Lghihyhy (A.5)
<eiexeremdo = (Ly | £2) Bikdim + Simdit + 8i1dkm) + (Ls/ &) (hikidim + hikmdii + ..} + Lekikihihm (A.6)

The function S,(8), which determinesthedependence of the kinetic coefficients on the ratio of the
semiaxes of the ellipsoid, can be represented in the form of linear combinations of the functions fm
8i

Sp= Z apn (n=1,2....,8 (A7)

m=1

fo=10sf s — 1)/ 9 (2 —1), fo =14 (> — 1)2/ Os (4 — 10s + 3J)
fo= A (2 — 1)/ 3 (22 + & — 3sJ), fo=2( — 13/ 95 (22T -+ J—63)

fo=4h(s2—1)2 /s {252 — 1) J —25], = S dz [ (1 +2) (s? 4- 2)* (A.8)
0

while the coefficients apy, can be written in the form of the matrix

0o 0 0 0 o0 ¢ o0 1
0 12 —6 —36 3 —2 2 10
emn=| 0 2 —2 24 —2 3 6 0
0 2 8 —36 3 —2 2 —10
YAt 2 —2 12 —2 3 —16 0

These equations can be simplified considerably in the limiting cases of very flattened, elongated,
and close to spherical particles. For s <1 we have
Sn=2an/9ns (A.9)

where the numerical coefficients a, (n=1.2,. . ., 8) can be written in the form of a row an=(9 16 —6 24 —1
-1-8 =%,

I s >1, we have S; = %, while for the other functions S, we obtain

Sp=1"5,2/91ns (n+£8; b, =4.5605 18 —1.5 7.5 —12) {A.10)
For particles which are almost spherical (A —0), S, =0 (A3 for n=4, 5, 7; for other values of n we
have
S1m § A Sam 4-0(33)
1= "5 — A, 3= 75— +4-0(42),
20 2 (A.11)
25 25 20
S3 =—‘-Wl, Ssz:/‘—zk, 58::6_3A'
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